
International Journal of  Theoretical Physics, Vol. 36, No. 1, 1997 

Redshift in Hubble's Constant 
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A topological field theory with Bogomol'nyi solitons is examined. The 
Bogomol'nyi solitons have much in common with the instanton in Yang-Mills 
theory; consequently we called them 'topological instantons.' When periodic 
boundary conditions are imposed, the field theory comments indirectly on the 
speed of light within the theory. In this particular model the speed of light is not 
a universal constant. This may or may not be relevant to the current debate in 
astronomy and cosmology over the large values of the Hubble constant obtained 
by the latest generation of ground- and space-based telescopes. An experiment 
is proposed to detect spatial variation in the speed of light. 

1. I N T R O D U C T I O N  

Astronomers have recently reported on observations for the Hubble 
constant that predict an age for the universe younger  than the estimated age 
o f  some nearby globular clusters (Pierce et  al . ,  1994; Freedman et  al. ,  1994; 
Tanvir et  al. ,  1995). The obvious tension has been christened the 'age crisis. '  
There are three possibilities, o f  course: the measurements  made for the Hubble 
constant are incorrect; current models for stellar evolution are incorrect; or 
there is new physics to be understood. It is unanimously agreed that without 
further observation it is too early to judge. And,  as noted by Sandage (1993), 
it must  be understood why other observations for  the Hubble constant based 
on type Ia supernovae are only half  as large. 

Observation has uncovered other pecularities in Hubble 's  constant. The 
Hubble relation turns sharply upward f rom linearity on a redshift vs. distance 
plot (Kristian et  al. ,  1978; Spinrad et  al., 1987). Refinements to the distance 
scale cannot o f  course account  for the nonlinearity. Sandage argues that the 
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nonlinearity is due to a bias in the choice of objects chosen for observat ion--  
we choose those objects that we are capable of  seeing. This bias must be 
filtered out in order to determine correctly the Hubble constant. 

Another hypothesis, although seemingly a remote possibility, is sug- 
gested by the observations: the speed of light in vacuum at distant space- 
time points from earth is less than the present, terrestrial speed of light. For 
suppose that the speed of light in a vacuum were not an absolute constant; 
then the redshift would need to be reassessed. The redshift is given by 

Ah v 
m = _ (I) 
h g 

where wc assume that the velocity of the cmittcr, v, is much Icss than the 
speed of light when the photon is emitted, g. If the speed of light at the time 
of emission is smaller than the present speed of light on earth, then the 
obscrvcd rcdshift in (I) would be greater. This would makc the Hubblc 
constant larger, and thereby make the universe appear to bc younger than it 
actually is. A lower spccd of light in the early universe might thcrcby mitigate 
the 'age crisis.' In addition, onc notes that under thcsc circumstances the 
enormous powcrs associated with quasars would bc reduced correspondingly. 

It is commonly held that a theoretical derivation for the spccd of a light 
will require a theory of quantum gravity. A theory of quantum gravity is 
defined to bc any theory that treats the space-time metric as a quantum field, 
so that quantum fluctuations in the light cone are expected. At some point, 
however, thc light cone must bc fixed and thc speed of light determined. 
Since a quantum gravity theory does not exist at present, this cannot bc 
investigated further. In the next section wc introduce a gcncrally covariant, 
classical, gauge ficld theory containing Yang-Mills and clcctrodynamics, 
which interestingly comments on the speed of light wi~_in that particular 
theory. The speed of light is found to vary spatially. A model therefore exists 
that lends a dcgrcc of support to the hypothesis above that the spccd of light 
is not a universal constant. In Section 3 wc examine how one might detect 
spatial variation in the speed of light, Note that our calculations lie entirely 
with classical ficld theory, and that although this paper studies spccifically 
the modcl imroduced in the next scction, the approach and philosophy operate 
in a much larger context. 

2. A M O D E L  W I T H  A VARIABLE SPEED OF L I G H T  

Let ~r" P ---> R 4 be a principal U(2)-bundle over R 4, and denote by E the 
associated rank-two adjoint vector bundle. ~ ( P )  is the space of connections on 
P. Let A, B ~ ~(P) ,  and introduce local coordinate charts with indices ix = 
0 . . . . .  3 on R 4. The Lie-algebra-valued connections or vector potentials A~ 
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and B~ induce exterior covariant derivatives DA~ = 0~ + A~ and D~ = O~ 
+ B~ on the associated adjoint vector bundle E. The curvatures H A and K B 
are defined by 2D~t ~/9~ls = Ha~s and 2/~t ~/9~1s = K~vs, respectively. In this 
way H A and K 8 are two-forms on R 4 taking values in the adjoint bundle E. 
In addition, we introduce two Higgs fields: ~a and cDB are functions on R 4 
taking values in the adjoint bundle E. The Lagrangian action that forms the 
basis of our model is given by 

,.~(A, B, (I)A, (I)B) = Iu4 ((HA ~ (IJB) A ((I) a ~ K~)) -- �89 | K8) 2) 

(2) 

The wedge product is taken on the space-time indices, and the tensor product 
is on the Lie-algebra vector spaces. The bundle inner product--the Hermitian 
structure--is denoted by (.). The Killing-Cartan inner product can be 
adopted. In any case, the Hermitian structure is normalized so that (I 2) = 
1. To make the action finite, we shall assume that the gauge fields are periodic 
in both space and time. Restricting consideration to one period, we compactify 
the underlying space-time manifold by adding the boundary and identifying. 
We require that the action be finite only over one period. The compactified 
space-time is now a torus T of real dimension four. 

The form of the Lagrangian (2) generalizes the topological gauge field 
theories studied by Horowitz (1989). In local space-time coordinates and 
using the Killing-Cartan inner product, we can write the Lagrangian action 
explicitly as 

~(A, B, dPA, dPB) = fr  Ht~vKxola b tr(TadPA) tr(TbdPB) d4x 

1 [r a b tr(@a@n) tr(T~T b) d4x (3) 2 Kt~,Kxol 

The generators of the Lie algebra are denoted by T a. For gauge groups where 
tr(T a) = 0 ,  the Lagrangian (3) reduces to the second integral--these are the 
topological field theories studied by Baulieu and Singer (1988). The varia- 
tional field equations for the Lagrangian (2) and for arbitrary ~a and ~n are 

DAK n = O, DnH a = 0 (4) 

The field equations are clearly independent of any metric structure. The set 
of solutions to (4) is not trivial, because when A = B the field equations 
reduce to the Bianchi identities. 

Observe that when a space-time metric is placed on R 4 (by whatever 
means) and used to define the Hodge star operator *, the topological field 
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equations (4) become the source-free Yang-Mills or electrodynamic field 
equations when the gauge field B is chosen so that K B = *H A. The topological 
field theory above therefore is seen to contain Yang-Mills theory and electro- 
magnetism. It is for this reason that we have defined a field theory with two 
vector potentials instead of one. 

We turn now to the Bogomornyi  structure. The Higgs fields will be 
arbitrary no longer. Set both ~A and ~ s  equal to Ie, the identity endomorphism 
on the adjoint bundle E. By completing the square, we can rewrite the 
Lagrangian (2) as 

2 ~  = fr ((Ha ~ IE - IE ~ Ks)2) 

- Ir ((HA | Ie)2) (5) 

The Lagrangian (5) is now in Bogomol'nyi form with Bogomol'nyi equations 

H A | 1 7 4  s = 0  (6) 

By a computation on the indices, equations (6) imply that H A and K s are 
projectively flat, 

H A = K s = iFl (7) 

where F is a real-valued two-form on T. Clearly solutions to the Bogomol'nyi 
equations (6) automatically satisfy the variational field equations (4) when 
F is closed. 

Let EA and Es be the adjoint vector bundles equipped with the covariant 
derivatives D a and D s, respectively. E* is the dual bundle to E. Recall that 
the curvature of the tensor product bundle EA | E~ is given by (Kobay- 
ashi, 1987) 

~A|  = HA | le - IE | K s 

The Bogomol'nyi equations in (6) are now seen to be a vanishing curvature 
condition on the tensor product bundle EA | E~. The trace inner product on 
E generalizes naturally to an inner product on E | E*. The first term in (5) 
is proportional to the topological characteristic class: 

c2(E (~ E*) - -~cl(E | E*) 2 = 2ncz(E) - (n - 1)Cl(E) 2 (8) 

In order that the vector bundle E admit a projectively flat connection, the 
characteristic class (8) necessarily vanishes. The second integral in (5) is also 
a characteristic class, 
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fr  1 t r (n  A A H a) = 8qT2(c2(E) --  ~ c I (E)  2) = -8'IT2X(E) (9) 

The Euler characteristic of the bundle E is denoted by • It is clear that 
under a perturbation of the vector potential both integrals in (5) are invariant, 
and when the Bogomol'nyi equations are satisfied the Lagrangian is propor- 
tional to the Euler characteristic (9). Nonsingular solutions to the Bogomol'nyi 
equations are nontrivial and stable when the Euler characteristic is 
nonvanishing. 

Of particular interest to us is the moduli space of solutions to the 
Bogomol'nyi equations, because the moduli space is the (covariant) phase 
space. In algebraic geometry, mathematicians impose Mumford-Takemoto 
topological stability on gauge theories to ensure that the moduli spaces are 
topologically well-behaved. Kobayashi (1987) has reformulated Mumford- 
Takemoto stability into a differential geometric form, known as the Einstein- 
Hermitian condition. The Einstein-Hermitian condition is well suited to the 
problem we are investigating, as we shall see, because the Einstein-Hermitian 
condition is closely related to the projective flatness produced by our Bogo- 
mol'nyi structure. 

To implement the Einstein-Hermitian condition we shall assume that 
after imposing periodic boundary conditions, the resulting four-torus is 
equipped with a K~ihler structure, and E ~ T is equipped with a holomorphic 
structure. All complex tori admit a K~ihler structure: a K~laler metric g and 
a closed K~ihler form �9 of type (1, 1). The Hermitian metric (-) and a 
holomorphic structure 0 on E give rise to a unique connection A. We shall 
now free the Hermitian metric and allow it to vary up to a conformal transfor- 
mation. The curvature H A is of type (1, 1). The mean curvature K of the 
vector bundle over a K~ihler manifold is Einstein-Hermitian when the mean 
curvature K satisfies (Kobayashi, 1987, p. 99) 

K = kle (10) 

where k is a real constant. Compare equation (10) with the projective flat- 
ness condition, 

H A = Fie (11) 

of the Bogomol'nyi equations (7). It has been proved in the mathematical 
literature that up to a conformal change in the Hermitian structure, a holomor- 
phic projectively flat connection and an Einstein-Hermitian connection on 
a vector bundle satisfying (8) are equivalent (Kobayashi, 1987; Liibke, 1982). 
The value of the constant k is given by 

k=2~rIMCl(E) AdP/IMd~2=2~deg(E) 
voI(M) 
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To obtain a phase space that is topologically well-behaved we shall therefore 
restrict ourselves to the set of holomorphic projectively flat connections 
on a vector bundle E satisfying the topological condition (8), equivalently, 
Einstein-Hermitian connections. We call holomorphic Bogomol 'nyi solitons 
'topological instantons.' For fixed k, the phase space is denoted by Ark. 

The complex rank-two vector bundle (E, ( . ) )  ---> (T, g, alp) defined over 
the K~aler torus is assumed to have the Chem numbers 4c2(E) = cl(E) 2 = 
--4. Our choice of topology is such that the topological condition (8) is 
satisfied and the Lagrangian (9) is nonvanishing. This is sufficient for the 
bundle to admit stable topological instantons, although existence remains at 
issue. We shall study 'diagonal' U(2) topological instantons on this bundle. 
By 'diagonal' we mean that the Einstein-Hermitian connections A and B are 
equal (A = B). Diagonal instantons are examined because under normfil 
circumstances there is little physical evidence to suggest two distinct vector 
potentials are necessary. We take the constant k in the Einstein-Hermitian 
condition (10) to be fixed and nonzero. The K~ihler structure on T allows us 
to say a great deal about the phase space Ark. 

The complex dimension of the U(2) topological instanton phase space 
when nonempty is given by (Kobayashi, 1987) 

dimc(At~) = 4h~ - 6 (12) 

The K ~ l e r  torus has h~ = 2. Therefore if a (diagonal) topological 
instanton exists, the real dimension of  the phase space Ark is four. It is 
significant that dim(Ark) = 4, because it is only massless particles that have 
a phase space of real dimension four in (3 + 1) space-time. [We have 
neglected K3 surfaces as models for compactified space-time because they 
have h~ = 0, thereby giving the phase space negative dimension.] 

Our next task is to include special relativity into the theory by locally 
mapping the phase space Ark to the model phase space for massless particles. 
Consider the phase space for massless particles in R 3. The (covariant) phase 
space is equivalent to the space-of-motions. Massless particles in R 3 move 
on straight lines and at the speed of light c. We may therefore parametrize 
the possible motions of a massless particle by assigning to a straight line 
x(t) in R 3 a velocity vector e = cfi and a position vector d so that x(t) = d 
+ te. The position vector d is defined as the normal from the origin to the 
line x(t), equivalently, the point on the line nearest the origin. See Fig. 1. 
Thus the phase space is 

,/[/tmassless ~--- { (C ,  d) e ~ • R31c 'd  = 0} (13) 

Therefore the model phase space for a massless particle on R 3 is equivalent 
to the tangent bundle T ~  where the radius of the sphere is the speed of light. 
The natural metric on T ~  is given by 



Redshift in Hubble's Constant 255 

O 

Fig. 1. A physical parametrization of the space-of-motions for massless particles in R 3. 

ds 2 = f ( r )  dr 2 + a(r)(d~ + cos 0 d~b) 2 + c2(d02 + sin20 d~b 2) (14) 

where (0, ~b) are spherical polar coordinates on the two-sphere and (r = [Id H, 
t~) plane polar coordinates on the tangent plane. The functions f ( r )  and a(r) 
are arbitrary, and we have multiplied c by unit time so that both d and c 
have units of length. We shall require that the local geometry of  JILk reduce 
to the geometry of special relativity. 

Using Fourier-Mukai transforms, we find that some theorems are avail- 
able. Assume that the real four-dimensional space-time torus is an Abelian 
variety with a (1, 2r) polarization I. It has been proved that the phase space 
J, tk is nonempty (that is, topological instantons exist) and isomorphic to the 
four-torus T (Maciocia, 1995, Proposition 7.1). By the isomorphism T ~-- JlLk, 
the phase space is equipped with a natural K'~ihler metric with vanishing 
Ricci tensor. In fact it is the flat metric. The model metric (14) implies that 
the speed of  light is infinite. We have been hasty, however. Recall that points 
were added to space-time in order to compactify it. We must now remove 
those points. The isomorphism T = J/tk allows us to remove the corresponding 
points in the phase space. The phase space is now decompactified. The metric 
on the phase space is no longer necessarily flat. Since At k remains four- 
dimensional and still has vanishing Ricci tensor, the phase space is hyper- 
Kiihler. Assume that the hyperK~ihler metric is complete and nonsingular 
on the decompactified topological instanton phase space J~tk. Assume local 
isotropy of  the universe, so that the phase space ~ k  admits SO(3) as a group 
of local isometries. Let us also assume that on JILl the orbits defined by the 
action under the isometries are generically three-dimensional. Then, the only 
complete, nonsingular, SO(3)-invariant hyperK~hler metrics on four-mani- 
folds with three-dimensional orbits are: the flat metric, the Atiyah-Hitchin 
metric, the Taub-NUT metric with positive mass, and the Eguchi-Hanson 
metric (Gibbons and Ruback, 1988). The Taub-NUT and Eguchi-Hanson 
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metrics admit another U(1) to make them U(2)-invariant. Only the Taub-NUT 
and the Eguchi-Hanson metrics, appear to be remotely compatible with the 
massless particle metric (14). If we also place on the model phase space 
Mm~e~s its natural complex structure and note that it is invariant under the 
natural SO(3) action, then only the Eguchi-Hanson metric is compatible with 
the local geometry of special relativity. 

The Eguchi-Hanson metric is of the form 

/.2 
ds 2 = [,y(r)]-I dr 2 + -4 (or2 + or~ + ,y(r)tr 2) 

where ~/(r) -- 1 - (a/r) 4 and {ori} is the dual basis for so (3). In terms of 
Euler angles, we define 

ort = d~b sin 0 cos 0 - dO sin 0 

Or E = d ~  sin 0 sin 0 + dO cos 0 

Or3 = d ~ b c o s 0  + d  O 

In Euler coordinates the Eguchi-Hanson metric becomes 

r 2 r 2 
ds 2 = [~/(r)] -l dr 2 + -~ "y(r)(d~ + cos 0 dd~) 2 + -~- (d02 (15) 

+ sin20 dd~ 2) 

Compare (15) with (14). Note that while the metrics are certainly similar, 
the two-sphere in the Eguchi-Hanson metric is a function of r. With this 
observation our physical parametrization follows. 

The Euler angles (0, d~, 4) in the Eguchi-Hanson metric (15) define 
the direction of the propagation, and the radius of the sphere is the speed of 
the massless topological instanton, as we saw for the model massless particle 
above. For the instanton to carry both energy and momentum and still remain 
massless, the energy-momentum relation in special relativity implies that the 
topological instanton moves at the speed of light. Thus the speed of light in 
this theory is also subject to spatial variation. However, the spatial coordinate 
r in the tangent space is ambiguous. Where, for example, is the origin? In 
conjunction with the cosmological principle we could place with impunity 
the origin on earth. The debate over the Hubble constant suggests that as a 
first-order approximation we try r = 2c - oLIIdll, where c is the present 
terrestrial speed of light in vacuum multiplied by unit time, et is a dimen- 
sionless constant, and Ildll is the distance from earth. The constant ot is then 
determined through observation and experiment. If the cosmological principle 
were not to hold, then the placement of the origin(s) is very important. One 
must, of course, rely on observation to place it/them. A final note: the 
quantization of the field theory may also have something significant to add 



Redshift in Hubble's Constant 257 

to the physical parametrization of the phase space. We shall examine this in 
a forthcoming paper. 

3. C O M P T O N  SCATTERING 

Assume that the speed of light ~ is not an absolute constant when viewed 
at very large spatial scales. To measure deviations in speed between distant 
light ? and terrestrial light c, one presumably examines photons that have 
interacted with matter in the early universe and have since then traveled 
unimpeded through space. Some of these photons eventually enter a detector; 
unimpeded travel requires that the detector be space-based. Since it is assumed 
that no interaction occurs during the photons' long journey, the energy E and 
the linear momentum E I (  are conserved. This implies that the photons travel 
toward earth with the constant speed of light ~ given to them upon emission. 
The incoming photons are absorbed by a loosely bound electron assumed to 
be initially at rest with mass m and are reemitted (photon scattering). We 
shall assume that the energy and linear momentum are conserved in photon 
scattering. By studying the scattered photons we determine characteristics of 
the incoming photons. This is the Compton effect, of  course. The standard 
computation using conservation of  momentum and energy gives the lowest 
order correction to the Compton formula. Let 0 denote the scattering angle, 
and define c = ~ + Ac, r - Acid,  and Ak = h'  - h; then 

AXe- (1 - c o s 0 )  + e  X + ~ ( 1  - c o s 0 )  

The second term is dependent on the wavelength, while the terrestrial Comp- 
ton effect is obviously independent of the wavelength. Scattering dependence 
on the incident wavelength would be a clear signal for spatial variation in 
the speed of light. 
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